If it's not what You are looking for type in the equation solver your own equation and let us solve it.
29x^2+20x-11=0
a = 29; b = 20; c = -11;
Δ = b2-4ac
Δ = 202-4·29·(-11)
Δ = 1676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1676}=\sqrt{4*419}=\sqrt{4}*\sqrt{419}=2\sqrt{419}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{419}}{2*29}=\frac{-20-2\sqrt{419}}{58} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{419}}{2*29}=\frac{-20+2\sqrt{419}}{58} $
| 2x=64,x | | 11+2*x=17 | | 1/2(h+12)=9 | | .70x+42=27.3 | | 12a-15=8a | | 120+2b4+30b-270=0 | | 2/3x-1/2=-1/6x+2 | | 2(h-3)=18 | | 2z–3=1 | | -6=0.75r-9 | | -18=-3/8u | | -6=0.75r-90 | | 11+2•x=17 | | 3(3x+5)-12x14=5 | | 120+2b4+30(b)-270=0 | | 9^-x=27 | | p+14=570 | | 24+12x=168 | | √4+x^2=0 | | 92-12a=-75 | | 11+2×x=17 | | 2(60+b4+15b)-270=0 | | p+18=220 | | z−2=4+9z | | 35*0.7=n | | 7(5x+1)=4x-7x | | A/q=6 | | 6x+15=31 | | 2-6b=2(1-3b) | | 2x^2=9=41 | | 43=-x | | 2x/(0.80-x)(0.20-x)=0.001 |